Association of moderate polyglutamine tract expansions in the slow calcium-activated potassium channel type 3 with ataxia.
نویسندگان
چکیده
BACKGROUND The small-conductance calcium-activated potassium channel gene (hSKCa3) contains 2 CAG repeats, 1 of which is highly polymorphic. Although this repeat is not pathologically expanded in patients with schizophrenia, some studies have suggested an allelic association with schizophrenia. CAG expansions in other genes such as the alpha1 subunit of a brain-specific P/Q-type calcium channel gene cause spinocerebellar ataxia type 6, whereas the length of the CAG repeat in the RAI1 gene modifies the age of onset of spinocerebellar ataxia type 2. OBJECTIVES To evaluate expansions in the hSKCa3 polyglutamine domain as causative for ataxia, and to study the association between the length of the polyglutamine repeat and the presence of ataxia. METHODS We analyzed this repeat in 122 patients with autosomal dominant cerebellar ataxia, or sporadic ataxia, and compared allele distribution with 750 alleles seen in 2 healthy control groups and 172 alleles in patients with Parkinson disease. RESULTS The distribution of alleles in ataxia patients and controls was significantly different by Wilcoxon rank test (P <.001). Twenty-two or more polyglutamine tracts were more common in ataxia patients compared with controls by chi2 analysis (P<.001). CONCLUSION Longer stretches of polyglutamines in a human potassium channel are not causative for ataxia, but they are associated with the presence of ataxia. There is no association with the presence of Parkinson disease.
منابع مشابه
Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2.
Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder caused by a polyglutamine expansion within the Ataxin-2 (Atxn2) protein. Purkinje cells (PC) of the cerebellum fire irregularly and eventually die in SCA2. We show here that the type 2 small conductance calcium-activated potassium channel (SK2) play a key role in control of normal PC activity. Using cerebellar slices from tran...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملEarly changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3.
The relationship between cerebellar dysfunction, motor symptoms, and neuronal loss in the inherited ataxias, including the polyglutamine disease spinocerebellar ataxia type 3 (SCA3), remains poorly understood. We demonstrate that before neurodegeneration, Purkinje neurons in a mouse model of SCA3 exhibit increased intrinsic excitability resulting in depolarization block and the loss of the abil...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملThe polyglutamine expansion in spinocerebellar ataxia type 6 causes a beta subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes.
Spinocerebellar ataxia type 6 (SCA6) is a dominantly inherited degenerative disorder of the cerebellum characterized by nearly selective and progressive death of Purkinje cells. The underlying mutation in SCA6 consists of an expansion of a trinucleotide CAG repeat in the 3' region of the gene, CACNA1A, encoding the alpha(1A) subunit of the neuronal P/Q-type voltage-gated calcium channel. Althou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of neurology
دوره 58 10 شماره
صفحات -
تاریخ انتشار 2001